On Trees Attaining an Upper Bound on the Total Domination Number

نویسنده

  • MARCIN KRZYWKOWSKI
چکیده

A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69– 75] established the following upper bound on the total domination number of a tree in terms of the order and the number of support vertices, γt(T ) ≤ (n+ s)/2. We characterize all trees attaining this upper bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

Co-Roman domination in trees

Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...

متن کامل

An Upper Bound on the Total Outer-independent Domination Number of a Tree

A total outer-independent dominating set of a graph G = (V (G), E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \D is independent. The total outer-independent domination number of a graph G, denoted by γ t (G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n ≥ 4, with l le...

متن کامل

Upper minus Total Domination Number of 6-regular Graph

Let Γ−t (G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a 6-regular graph G and characterize the extremal graphs attaining the bound. Thus, we partially answer an open problem by Yan, Yang and Shan. AMS Subject Classification: 05C69

متن کامل

An upper bound on the 2-outer-independent domination number of a tree Borne supérieure sur le nombre de 2-domination extérieurement-indépendante d’un arbre

A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V (G)\D has a at least two neighbors in D, and the set V (G) \D is independent. The 2-outer-independent domination number of a graph G, denoted by γ 2 (G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014